tags math calculus
f′(x)=h→0limhf(x+h)+f(x)
f′(x)=dxdf(x)
dxdf(x)g(x)=f′(x)g(x)+f(x)g′(x)
dxdg(x)f(x)=g(x)2f′(x)g(x)+f(x)g′(x)
dxdf(g(x))=f′(g(x))×g′(x)
dxdcos(x)=−sin(x)
dxdtan(x)=sec(x)2
dxdcot(x)=csc(x)2
dxdsin−1(x)=1−x21
dxdcos−1(x)=1−x2−1
dxdtan−1(x)=1+x21
g(x)=k(x)∫h(x)f(x) dxg′(x)=f(h(x))h′(x)−f(k(x))k′(x)
∫f(x) dg(x)=f(x)g(x)−∫g(x) df(x)
∫ef(x) dx=f′(x)ef(x)+c
∫ln(x) dx=xln(x)−x+c
∫x1 dx=ln(x)+c
∫sin(x) dx=−cos(x)+c
∫tan(x) dx=−ln(cos(x))+c
∫sec(x)2 dx=tan(x)+c
∫1+x22x dx=ln(1+x2)+c
f(n)(a)=f(x)在x=a的n次導數f(x)=0!f(0)(a)(x−a)0+1!f(1)(a)(x−a)1+2!f(2)(a)(x−a)2⋯f(x)=n=0∑∞n!f(n)(a)(x−a)n
f(x)=sin(x)→f0(x)=sin(x)f1(x)=cos(x)f2(x)=−sin(x)f3(x)=−cos(x)f4(x)=sin(x)=f0(x)if a=0f(x)sin(x)=n=0∑∞n!f(n)(a)(x−a)n=n=0∑∞(4n+0)!sin(0)(x)4n+(4n+1)!cos(0)(x)4n+1+(4n+2)!−sin(0)(x)4n+2+(4n+3)!−cos(0)(x)4n+3=n=0∑∞(4n+1)!cos(0)(x)4n+1+(4n+3)!−cos(0)(x)4n+3=n=0∑∞(4n+1)!1(x)4n+1+(4n+3)!−1(x)4n+3=n=0∑∞(2n+1)!(−1)n(x)2n+1