tags math matrix algebra
AB=[1203][acbd]
AB=[1203][acbd]=[1a+0c2a+3c1b+0d2b+3d]
AB=[1203][acbd]=[a[12]+c[03],b[12]+d[03]]
AB=[1203][acbd]=[1[ab]+0[cd]2[ab]+3[cd]]
AB=[1203][acbd]=[12][ab]+[03][cd]
actually the row reduce from the there are matrix multiplication as well
Subtracting 2 times the 1st row of A from the 2nd row of A
{EA}→A+1−20010001x11x21x31x12x22x32x13x23x33=x11x21−2x11x31x12x22−2x21x32x13x23−2x13x33
{EA}1−2001000124−21−67102→A+→20−21−871−22
G,F,E are elimination operation matrix
E−1F−1G−11l∗21001000110l∗3101000110001l∗320011l∗21l∗3101l_32001=L=1l∗21l∗3101l∗32001=L
U=d∗1d2⋱dn1d∗1u∗121d∗1u∗13d2u∗23⋱1U=DU∗
L is Lower triangular matrix
U is Upper triangular matrix
GFEA=UE−1F−1G−1U=Alet L=E−1F−1G−1LU=ALDU∗=A
AxL−1AxUxx=b=L−1b=L−1b=U−1L−1b
A=ATA=LDU∗=LDL−1
project b on a as a^(b−a^)⊥a→aT(b−a^)=0a^=x×aaT(b−a^)aTb−aTa^aT(a^)aT(x×a)x×(aTa)x=0=0=aTb=aTb=aTb=aTaaTba^=x×a=aTaaTb×a=P(aTaaaT)b
a^=Paa−Pa=(I−P)a
A+(Ax)=xrA+=AT(AAT)−1AA+=I
det(ab)det(aT)=det(a)det(b)=det(a)1
A=UΣVTdet(ATA−λI)=0(ATA−λI)V=0Σ=diagonal(λ)sort by big to smallV=unit-length(V)VTV=IU=AVΣ−1ui=λi1Avi
AA=QS=UΣVT=(UVT)(VΣVT)=QS