tags probability
2023PB_HW5.pdf
P(X=0)=366,P(X=1)=3610,P(X=2)=368,P(X=3)=366,P(X=4)=364,P(X=5)=362
P(X<1)=F(1−)=21P(X=1)=F(1)−F(1−)=61P(0≤X<1)=F(1−)−F(0−)=41P(X>21)=1−F(21)=21P(X=23)=F(23)−F(23−)=0P(1<X≤6)=F(6)−F(1)=31
q=1−p=0.881−qx≥0.6qx≤0.40.88x≤0.4x×ln(0.88)≥ln(0.4)x≥7.1,x=8
P(1)=3611,P(2)=369,P(3)=367P(5)=365,P(5)=363,P(6)=361f(x)=⎩⎨⎧036119543981x<11≤x<22≤x<33≤x<45≤x<66≤x
20000002000000∗−1+20000004000∗30+2000000500∗800+20000001∗1200000=−0.14
E[x(11−x)]=E[−x2]+11E[x]E[−x2]=i=1∑1010−i2=−38.511E[x]=11i=1∑1010i=60.5E[x(11−x)]=22
First one.Because the standard deviation is smaller
E[x]=i=0∑∞i∗p(x=i),E[x2]=i=0∑∞i2∗p(x=i)E[x]=−3∗83+0∗83+6∗41=83E[x2]=9∗83+0∗83+36∗41=899var(x)=E[x2]−(E[x])2=12.23σ=var(x)=3.498
E[x2−2x]=E[x2]−2E[x]=3E[x2]=5var(x)=E[x2]−(E[x])2=5−1=4var(−3x+4)=(−3)2var(x)=9∗4=36