tags probability
2023PB_HW9.pdf
x∈1,2,3∑y∈1,2∑P(x,y)=1x∈1,2,3∑y∈1,2∑c(x+y)=121c=1c=211
Px(x)=211(2x+3)Py(y)=211(3y+6)
P(x≥2 ∣ y=1)=Py(y=1)P(x≥2 ∩ y=1)=7331=97
E(x)=x∈1,2,3∑x211(2x+3)=2.1904E(y)=2∈1,2∑y211(3y+6)=1.5714
P(x,y)=x∖y23456789101112136103610361036103610361103620362036203620362020036203620362036200300036203620362000400003620362000050000036200000px(x)=361(6−∣7−x∣)py(y)=⎩⎨⎧366362(6−y)0y=00<y≤5else
fx(x)=∫0x2 dy=2y0x=2xfy(y)=∫y12 dx=2xy1=2−2y
E(X)=∫01∫01x×fx(x) dydx=32E(Y)=∫01∫01y×fy(y) dydx=31
P(x<21)=∫0212x dx=41P(x<2y)=∫01∫2vv2 dudv=21P(x=y)=∫01∫vv2 dudv=0
fxy=fx(x)fy(y)not independent
fx∣y(x∣y)=fy(y)f(x,y)=2−2y2
px(x)=⎩⎨⎧73740x=1x=2elsepy(y)=⎩⎨⎧75720y=1y=2elsepxy(1,1)=71px(1)py(1)=4915p(x,y)=px(x)py(y)not independent
E(x2y)=∫0∞∫0∞x2y×2e−(x+2y) dxdy=1
Px∣y(x∣y)=fy(y)f(x,y)Py(y)=⎩⎨⎧25525725130y=0y=1y=2elseP(x=2∣y=1)=py(y=1)fx,y(x=2,y=1)=257255=75E(x∣y=1)=x∑x×fx,y(x,y=1)=2512
∫01∫01−xλ dydx=1λ=2
fx∣y(x∣y)=fy(y)f(x,y)fy(y)=∫01−y2 dx=2−2yfx∣y(x∣y)=1−y1
E(X∣Y=y)=∫01−yx×fx∣y(x∣y) dx=∫01−yx×1−y1 dx=2(1−y)x201−y=21−y