SS_mid_hw.pdf
odd signal of x[n] is {x[n]−x[−n],n>=0,n<0
odd signal x[n]=−x[−n]
odd signal x[n]=−x[−n]
even signal x[n]=x[−n]
xo[n]={x[n]−x[−n],n>=0,n<0
xe[n]{x[n]x[−n],n>=0,n<0
product of xo[n] and xe[n] is {x[n]2−x[−n]2,n>=0,n<0 still are odd signal since x[n]=−x[−n]
x=xo+xex(t)2=xo(t)2+2xo(t)xe(t)+xe(t)2∫−∞∞x2(t) dt∫−∞∞x2(t) dt∫−∞∞x2(t) dt=∫−∞∞xo2(t) dt+∫−∞∞2xo(t)xe(t) dt+∫−∞∞xe2(t) dt=∫−∞∞xo2(t) dt+0+∫−∞∞xe2(t) dt=∫−∞∞xe2(t) dt
| linear | time invariant |
| y(t)=t2x(t−1) | no | no |
| y[n]=x[n+2]−x[n−3] | yes | yes |
| y[n]=Od{x[n]} | yes | no |
| period |
| x(t)=3cos(4t+3π) | 2π |
| x(t)=Od{sin(4πt)u(t)} | 0.5 |
| x[n]=cos(8n−π) | None |
| memoryless | time invariant | linear | causal | stable |
| y[n]=Ev{x[n−1]} | ❌ | ✅ | ✅ | ✅ | ✅ |
| y[n]=x[n−2]−2x[n−3] | ❌ | ✅ | ✅ | ✅ | ✅ |
| y(t)=cos(3t+2)x(t) | ✅ | ✅ | ❌ | ✅ | ✅ |
| y[n]={0,x(t)+x(t−2),if t<0otherwise | ❌ | ✅ | ❌ | ✅ | ✅ |