SS_final_hw.pdf
real and odd →∫−∞∞x(t) dt=0
21∫02∣asin(πt)∣2dta2∫02∣sin(πt)∣2dta2∫02cos(πt)2dta2=1=2=2=2x(t)=±2sin(πt)
aka0akak=51∫05x(t)e−jk52πt dt=51∫05x(t) dt=25=51∫05x(t)e−jk52πt dt=51{x(t)−jk52πte−jk52πt}05 dt
h(t)=if t≥1 then e−2(t−1) else 0
yes
h(t)=0 when t<0
yes
∫−∞∞∣h(t)∣ dt=∫1∞∣e−2(t−1)∣ dt<∞