tags: math
link
DFA(Deterministic Finite Automation)
NFA(Nondeterministic Finite Automation)
PDA(Push Down Automation)
D F A = ( Q , Σ , δ , q 0 , F ) Q = state set Σ = input char domain(set) δ = δ ( Q , Σ ) → Q ′ q 0 = start state F = accept state set
∅ ϵ ∘ R k R + R ∗ = empty set = empty expression = concat = k times R ∘ R ∘ ⋯ ∘ R = R ∘ R ∗ = R + ∪ ϵ
L 1 , L 2 is regular language operation ⎩ ⎨ ⎧ L 1 ∪ L 2 L 1 ∩ L 2 L 1 L 1 ∘ L 2 L ∗ L 1 − L 2 = L 1 ∩ L 2 homomorphism is regular language
L = { w c w ∣ w ∈ { a , b } ∗ }
w c w = ( a ∪ b ) i c ( a ∪ b ) i ( a ∪ b ) i c ( a ∪ b ) j = x ( a ∪ b ) p − i y ( a ∪ b ) i z c ( a ∪ b ) p and i > 0 By pumping lemma ∣ y ∣ ≥ 1 ∣ x y ∣ ≤ p ( ∀ k ≥ 0 ) ( x y k z ∈ L ) But x y 0 z = ( a ∪ b ) p − i c ( a ∪ b ) p ∈ / L Therefor this is not regular languages
For every NFA N there is a regular expression R such that L ( R ) = L ( N )
L(q,p,k){w ∈ Σ ∗ | there is a run of M on w from state q to state p and let passing through states set length < k}.
P = ( Q , Σ , Γ , δ , q 0 , Z 0 , F ) Q Σ Γ δ q 0 Z 0 F = state set = input char domain(set) = stack symbol set = δ ( Q , Γ , Σ ) → ( Q ′ , Γ ′ ) = init state = init stack = accept state set
G = ( V , Σ , P , S ) V Σ S P = state set = input char domain(set) = start variable = S → S ′
L 1 = { a n b m c m + n ∣ n , m ∈ N 0 }
G = ( V , Σ , P , S ) V Σ S P = { S , A , B } = { 0 , 1 } = start variable = ⎩ ⎨ ⎧ S A B → A → a A c | B → b B c | ϵ L 1 = L ( G )
L 1 , L 2 is regular language operation ⎩ ⎨ ⎧ L 1 ∪ L 2 L 1 L 1 ∘ L 2 L ∗ L 1 − L 2 = L 1 ∩ L 2 homomorphism is regular language