v1=1−20v2=2−22v3=−142set{v1,v2,v3}span: mean all the combination vector of can combine by v1、v2、v3.set{v1,v2,v3}spanR3: mean all the vector can be combine by v1、v2、v3.b are the all the vectorx are the all the possible vectorexample:if{v1,v2,v3}spanR3thenA1−202−22−142∗xx1x2x3=bb1b2b3and1−202−22−142000have pivot position in every rowbut1−202−22−142b1b2b3=100010−310b1b2b3did not have pivot point in row3So{v1,v2,v3}notspanR3
If A is vector space then⎩⎨⎧the zero vector or zero matrix must be in side of Aif u and v is inside A then (u+v) should be inside Aif v is inside A then n∈R and n*v should be also inside A
Find P and D thatA=PDP−1So A2=(PDP−1)(PDP−1)A2=PD2P−1An=PDnP−1n×mP=[V1EigenVectorV2EigenVectorV3EigenVector…]n×mD=λ1EigenValue00⋮0λ2EigenValue0⋮00λ3EigenValue⋮………⋱
If column vector are orth to each other and the length of column vector is 1 then is orthonormalthen is orthogonal matrix21021⊥21210⊥02121210212121002121is orthogonal matrixif A is orthogonal matrix then AT×A=IAT=A−1det(A)2=1
(dimβ)n=2,(test number)m=4β0+xβ1=y,(x,y) β0+2β1=1,(2,1) β0+5β1=2,(5,2) β0+7β1=3,(7,3) β0+8β1=3,(8,3) A×β=yA[m×n]11112578×β[n×1][β0β1]=y[m×1]1233y^=y projection on Az=y−y^z∈nul ATdistance of y to A columns space is z(because z⊥A)
Find βlet∣Aβ−y∣2haveminif derivative f′(a)=0thenf(a) is max or min value dβd∣y−Aβ∣2=02∣y−Aβ∣×dβd∣y−Aβ∣=02∣y−Aβ∣×dβd(∣y∣−2y⋅Aβ+∣Aβ∣)=02∣y−Aβ∣×(A+∣Aβ∣)=0
Find βlet∣Aβ−y∣2havemin∣ATy−ATAβ∣∣AT(y^+z)−ATAβ∣∣ATy^+ATz−ATAβ∣∣ATy^−ATAβ∣=AT×distance=AT×distance=AT×distance=AT×distancey^∈A columns space so can find Aβ=y^∣ATy^−ATAβ∣=0ATy=ATAββ=(ATA)−1ATy