Q3.pdf
det(A)=i=0∏λi
AAT=QΣQ−1=(QΣQ−1)T=(QΣQ−1)T=(QTΣQ)
Ax=v1+v2x=v1+21v2v0 is in A nullspace
det(A1)=0det(A2)=−4det(A3)=4A1 cant diagonalized
a.A2=IAv=λvA2v=vλ2=1b.det(A)=±1trace(A)=c.A=[38−1−3]
A=[1111]P=A(ATA)−1AT
[Gk+1Gk+2]=[021121][GkGk+1]
A=QΣQ−1A=[.4.6.2.8]det(A−λI)=0(0.4−λ)(0.8−λ)−0.120.32−1.2λ+λ2−0.12λ2−1.2λ+0.2=0=0=0λ0=0.2,λ1=1Av0=λ0v0Av1=λ1v1Σ=[0.2001]Q=[−111.3]Ak=QΣkQ−1
A=[1ii001]AH=1−i0−i01C=AHAC=011CH=CTyes
det(A−λI)=0(A−λ1I)v1=0(A−λ2I)v2=0A=λ1v1v1H+λ2v2v2H
- (a) real eigenvalue
- (b) real part < 0
- (c) eigenvalue 1 or -1
- (d) eigenvalue =1
- (e)
- (f) eigenvalue =0
KKH=[iiii]=−K=[−i−i−i−i]det(K−λI)=0det([i−λiii−λ])=0λ1=2i,λ2=0K=SΣS−1K=[111−1][2i000][111−1]−1
A=(Z+ZH)÷2Z=A+KK=Z−AK=Z−(Z+ZH)÷2K=2Z−ZH
A=31[11+i1−i−1]det(A−λI)=0(A−λI)V=λVA=VΣVH
V1=v1+v2V2=v2[1−101]
A=[5445][1001]A=[5445][1−4/501]A=[5049/5]A=[1−4/501]−1[5049/5]A=[14/501][1/5005/9]A=LUA=[14/501][1/5005/9][104/51]A=LDU
A=[xy][14/501][1/5005/9][104/51][xy]
A=101[10068]A=UΣVT